

Condensation reactions of various nucleophiles with 3-formylchromone

V B Halmor, N R Dalvi, N S Joshi, C H Gill & B K Karale *

P G Department of Chemistry, S S G M College, Kopargaon, Ahmednagar 423 601, India

E-mail-bkkarale@yahoo.com

Received 9 November 2004; accepted (revised) 8 August 2005

3-Formylchromones **1** are condensed with 1-(2,4-difluorophenyl-2-[1,2,4]triazol-4-yl)ethanone in acetic anhydride to afford 3-[3-(2,4-difluoro-phenyl)-3-oxo-2-[1,2,4]triazol-4-yl]propenyl]chromon-4-ones **2**. 3-Formylchromone **1** when heated with benzo[d]isoxazol-3-yl-acetic acid in dry pyridine yield 3-(2-benzo[d]isoxazol-3-yl-vinyl)chromon-4-ones **3**. Further, 3-formylchromone **1** on heating with N-methylpiperazine in ethanol give 1-(2-hydroxyphenyl)-3-(4-methylpiperazin-1-yl)propenones **4**.

Keywords: Formylchromones, styrylchromone, condensation, nucleophiles

IPC: Int.Cl. **7 C 07 D**

Hormothamnione is the first naturally occurring styrylchromone isolated from the blue green algae Hormothamnione enteramorphoides¹. It has potent cytotoxicity to P-388 lymphocytic leukemia and HL-60 human promyelocytic leukemia cells.

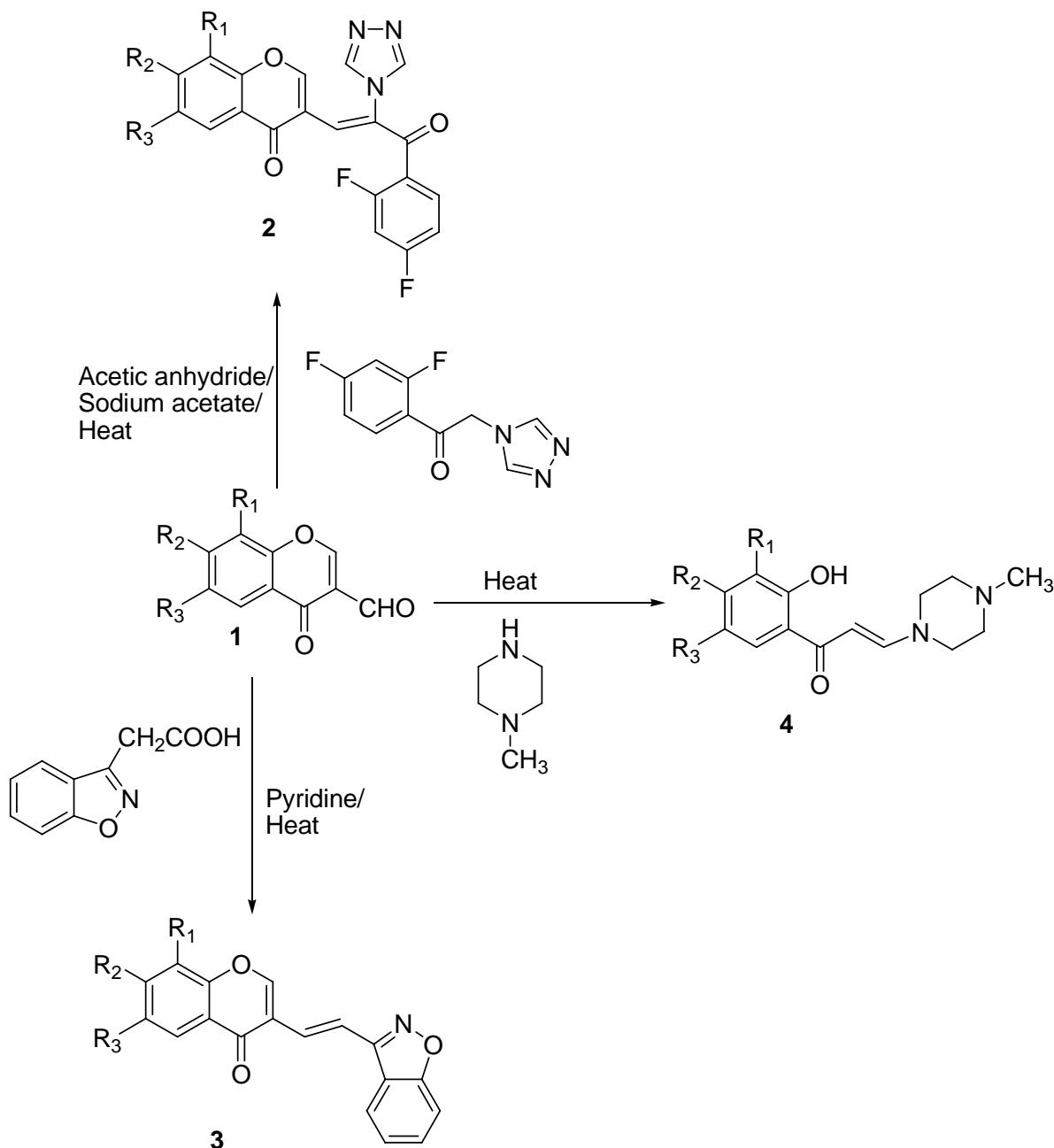
Condensation reactions of active methylene group with aldehyde function of 3-formylchromone has been studied by different workers²⁻¹⁰. Condensation products of these reactions showed significant biological activities. Benzisoxazoles and triazoles also have been found to be associated with important biological activities.

Fluorine containing amino acids are potential enzyme inhibitors and therapeutic agents¹¹. Fluorinated analogs are accepted by enzymes as substrates, as fluorine is comparable in steric demand to hydrogen, but often are not substrates for normal enzymatic reactions. Fluorinated analogs of naturally occurring nucleic acids are found to be associated with antiviral¹², antitumor^{13,14} and antifungal activities. Fluorinated aromatic compounds have been widely used as antibiotics, sedatives, agrochemicals, etc.

Due to activities associated with chromones, styrylchromones and enamine compounds it was thought worthwhile to synthesize some new derivatives of these compounds and test them for biological activities.

In present investigation, 3-formylchromones **1** were condensed with 1-(2,4-difluorophenyl-2-[1,2,4]triazol-4-yl)ethanone in acetic anhydride to afford 3-[3-

(2, 4-difluorophenyl)-3-oxo-2-[1,2,4] triazol-4-yl)propenyl]chromon-4-ones **2**. Also, 3-formylchromones **1** on heating with benzo[d]isoxazol-3-yl-acetic acid in dry pyridine gave 3-(2-benzo[d]isoxazol-3-yl-vinyl)-chromon-4-ones **3**. Further, 3-formylchromones **1** when heated with N-methylpiperazine in ethanol furnished 1-(2-hydroxyphenyl)-3-(4-methylpiperazin-1-yl)propenones **4** (**Scheme I, Table I**).


Antimicrobial screening

Compounds listed in **Table I** were screened (doses of 100 µg) for their antibacterial activity against gram -ve bacteria *E.coli* and gram+ve bacteria *S.albus* using filter paper disc method. Plates were incubated for *E.coli* at 48 hr and for *S.albus* 24 hr respectively at room temperature. Streptomycin sulphate was used as a standard. Inhibition zones were measured in mm and results obtained are shown in **Table II**.

All these compounds were also screened (doses of 100 µg) for their antifungal activities against *A.niger* using greseofulvin as a standard. The results are shown in **Table II**.

Experimental Section

All the melting points were determined in open capillary tubes and are uncorrected. IR spectra were recorded on a Perkin-Elmer FT spectrophotometer in KBr disc; ¹H NMR spectra on a Varian 300 MHz spectrophotometer using DMSO-*d*₆ as a solvent and TMS as an internal standard (chemical shifts in δ,

Scheme I

ppm); and mass spectra on a Finnegan mass spectrometer.

3-[3-(2,4-Difluorophenyl)-3-oxo-2-[1,2,4]triazol-4-yl]propenylchromone 2. 3-Formylchromone **1** (0.001 mole), 1-(2,4-difluorophenyl)-2-[1,2,4]triazol-4-ylpropenone (0.001 mole) and sodium acetate (1.5 g) were taken in RBF with 15 mL acetic anhydride as a solvent. Reaction mixture was heated under reflux for 5 hr. The contents were cooled to room temperature and poured onto crushed ice with vigorous stirring. Solid product thus obtained was

separated by filtration and crystallized from acetic acid to get **2a**; IR: 3009, 1670, 1652, 1609, 1069, 734 cm⁻¹; ¹H NMR: δ 8.82 (s, 1H), 8.18 (s, 1H), 8.10 (s, 1H), 7.29 to 7.83 (m, 7H); Mass: M⁺ at 413.

Compounds **2b-h** were prepared similarly. The physical data of **2a-h** are given in **Table I**.

3-(2-Benzod[d]isoxazol-3-yl-vinyl)chromone-4-one 3. 3-Formylchromone **1** (0.001 mole), benzo[d]isoxazol-3-yl-acetic acid (0.001 mole) were taken in RBF with 15 mL dry pyridine. Reaction mixture was heated under reflux for 4 hr. The contents were then

Table I—Physical data of compounds **2a-h**, **3a-h** and **4a-h**

Compd	R ₁	R ₂	R ₃	R ₄	N (%)		m.p. °C	Yield (%)
					Found	Calcd		
2a	H	H	Cl	H	10.10	10.16	320	56
2b	H	H	CH ₃	H	10.55	10.68	218	58
2c	CH ₃	H	CH ₃	H	10.25	10.31	224	61
2d	H	CH ₃	H	CH ₃	10.26	10.31	211	46
2e	H	CH ₃	H	H	10.65	10.68	216	55
2f	Cl	H	H	H	10.15	10.16	254	63
2g	Cl	H	Cl	H	09.35	09.38	240	65
2h	H	CH ₃	Cl	H	09.80	09.82	236	64
3a	H	H	Cl	H	09.95	09.98	224	62
3b	H	H	CH ₃	H	10.75	10.76	205	56
3c	CH ₃	H	CH ₃	H	10.20	10.21	214	53
3d	H	CH ₃	H	CH ₃	10.15	10.21	209	55
3e	H	CH ₃	H	H	10.75	10.76	198	59
3f	Cl	H	H	H	09.93	09.98	211	51
3g	Cl	H	Cl	H	08.85	08.89	233	58
3h	H	CH ₃	Cl	H	09.45	09.50	238	61
4a	H	H	Cl	H	04.30	04.33	124	42
4b	H	H	CH ₃	H	04.60	04.62	129	45
4c	CH ₃	H	CH ₃	H	04.35	04.41	140	40
4d	H	CH ₃	H	CH ₃	04.40	04.41	132	44
4e	H	CH ₃	H	H	04.55	04.62	137	43
4f	Cl	H	H	H	04.31	04.33	126	41
4g	Cl	H	Cl	H	03.90	03.91	138	46
4h	H	CH ₃	Cl	H	04.10	04.15	142	45

cooled to room temperature and poured onto crushed ice. Solid product thus obtained was separated by filtration and crystallized from acetic acid to get **3a**; IR: 3056, 1651, 1610, 735 cm⁻¹; ¹H NMR: δ 9.00 (s, 1H), 8.22 (d, *J*=17.1Hz, 1H), 7.66 (d, *J*=17.1Hz, 1H), 7.49 to 8.30 (m, 7H); Mass: M⁺ at 323.

Compounds **3b-h** were prepared similarly. The physical data of **3a-h** are given in **Table I**.

1-(2-Hydroxyphenyl)-3-(4-methylpiperazin-1-yl)propenone 4. 3-Formylchromone **1** (0.001 mole), *N*-methylpiperazine (0.003 mole) were taken in RBF with 15 mL dry ethanol. Reaction mixture was heated under reflux for 5 hr. The contents were then cooled to room temperature and poured onto crushed ice. Solid product thus obtained was separated by filtration and crystallized from ethanol to get **4a**; IR: 3438, 1625, 1577, 1535, 736 cm⁻¹; ¹H NMR: δ 2.20 (s, 3H), 2.40 (s, 4H), 3.65 (s, 4H), 6.2 (d, *J*=12Hz, 1H), 7.89 (d,

Table II—Antimicrobial activities of the synthesized compounds

Compd	Zone of inhibition in mm		
	<i>E.coli</i>	<i>S.albus</i>	<i>A.niger</i>
2a	18	16	12
2b	14	16	10
2c	14	14	12
2d	16	14	10
2e	18	14	12
3a	12	12	08
3b	12	10	08
3c	14	12	10
3d	14	10	08
3e	12	12	08
4a	10	10	08
4b	12	12	06
4c	10	10	08
4d	12	10	08
4e	10	12	06
Sreptomycin sulphate	20	18	not tested
Greseofulvin	not tested	not tested	14

J=12Hz, 1H), 6.82 to 8.06 (m, 3H), 14.62 (s, 1H, exchangeable with D₂O); Mass: M⁺ at 280.

Compounds **4b-h** were prepared similarly. The physical data of **4a-h** are given in **Table I**.

Acknowledgement

Authors are thankful to Dr Gorakh Sangale, Principal, SSGM College, Kopargaon, Ahmednagar for constant encouragement and providing necessary facilities.

References

- 1 Gerwick W H, Lopez A, Van Duyne G D, Clardy J, Ortiz W & Bacz A, *Tetrahedron Lett*, 27, **1986**, 1979.
- 2 Prousek J, *Collect Czech Chem Commun*, 58(12), **1993**, 3014.
- 3 Sarma G V S Rama & Reddy V M, *Indian J Heterocycl Chem*, 3(2), **1993**, 111.
- 4 Nohara A, Kuruki H, Saijo T, Ukawa K, Murata T, Kanno M & Sanno Y, *J Med Chem*, 18, **1975**, 34; *Chem Abstr*, 82, **1975**, 106186y.
- 5 Nohara A, Kuruki H, Saijo T, Sugihara H, Kanno M & Sanno Y, *J Med Chem*, 20, **1977**, 141; *Chem Abstr*, 85, **1976**, 105400t.
- 6 Abdou W M, Khidze M D & Mahran M R, *Phosphorus, Silicon, Sulfur related Elements*, 61(1-2), **1991**, 83.
- 7 Nohara A, *J Med Chem*, 20(1), **1977**, 141; *Chem Abstr*, 86, **1977**, 114975c.

8 Klaus G & Klaus M, *Arch Pharm*, 321(9), **1988**, 567; *Chem Abstr*, 110, **1989**, 26695j.

9 Reddy M S K, *Indian J Chem*, 29B, **1990**, 978.

10 Polyakov V K, Babich Yu P, Shevtsova R G, Trusevich N D, Lavrushin V F, *Khim Khim Tekhnol*, 30(5), **1987**, 42.

11 Kollonitsch J, Perkins L M, Patchett A A, Doldouras G A, Murgburg S, Duggan D E, Maycock A L & Aster S D, *Nature*, 274, **1978**, 906.

12 Bergstrom D E & Swartling D J, *Fluorine containing Molecules, Structure, Synthesis and Applications*, edited by J F Liebman, A Greenberg and W R Dolbier (Jr), (VCH, Deerfield Beach), **1988**.

13 Lucey N M & McElhinney R S, *J Chem Res (S)*, **1985**, 240.

14 Hoshi A, *In Fluoropyrimidines in Cancer Therapy*, edited by K Kimura, S Fujii, M Ogawa, G P Bodey and P Alberto, (Elsevier Science), **1984**.